
FunctionBench : A Suite of Workloads for
Serverless Cloud Function Service

Jeongchul Kim
College of Computer Science

Kookmin University, South Korea

kjc5443@kookmin.ac.kr

Kyungyong Lee
College of Computer Science

Kookmin University, South Korea

leeky@kookmin.ac.kr

Abstract—Serverless computing is attracting considerable
attention recently, but many published papers use micro-
benchmarks for evaluation that might result in impracticality.
To address this, we present FunctionBench, a suite of practical
function workloads for public services. It contains realistic
data-oriented applications that utilize various resources during
execution. The source codes customized for various cloud service
providers are publicly available. We are positive that it suggests
opportunities for new function applications with lessen experi-
ment setup overheads.

Index Terms—workload; serverless; benchmark; FaaS; cloud

I. INTRODUCTION

Serverless computing with a Function-as-a-Service (FaaS)

execution model is rapidly gaining popularity. The FaaS model

allows programmers to focus on the core application devel-

opment without overhead from server provisioning and run-

time management. In the FaaS execution model, containers

launched from virtual machines are utilized to run user-defined

functions. It is well-known that many cloud service vendors

provide serverless computing services with proprietary-library
attached to a FaaS model [2]. For example, the Lambda service

by AWS, which is the first public FaaS provider, provides a

well-integrated service with AWS S3 (object storage), Dy-

namoDB (key-value storage), SNS (notification), and SQS

(message queueing).

Due to its popularity, the FaaS model has been employed in

the industry and academia to achieve several applications and

research breakthroughs, respectively, resulting in the coverage

of a wide range of topics such as opportunities and limitation

of serverless computing [2], new applications [4, 1], function

run-time environment optimization [6], and public service

comparison [8, 5].

Though many research results based on the FaaS execution

model have been published in the literature, they lack com-

mon workloads that are vital in the accurate comparison of

many systems and algorithms. Consequently, most published

results are based on micro-benchmarks that emphasize specific

computer resources such as CPU, memory, disk, or network.

Though such micro-benchmarks provide a way to evaluate

each resource exclusively, they are different from the require-

ments of real FaaS applications that are widely used recently.

To overcome the limitation, we propose FunctionBench, which

provides a suite of workloads to evaluate various aspects of a

FaaS execution model in realistic application scenarios1.

FunctionBench contains a micro-benchmark and an appli-

cation workload; the micro-benchmark uses simple system
calls to exclusively measure the performance of the target

resource, while the application-benchmark represents realistic

data-oriented applications that generally utilize various re-

sources together. We are positive that the introduction of Func-

tionBench will enable researchers to easily deploy function

applications in the accurate evaluation of various systems and

algorithms. As far as we know, the proposed FunctionBench

is the publicly available FaaS workload suites that can be

deployed on public cloud services.

II. PROPOSED FUNCTION WORKLOADS

Table I shows FuntionBench workloads. The column labeled

amount of loads represents the relative overhead intensity

of each workload, and the input/output columns define how

they should be prepared to run the workloads. The current

version of FunctionBench supports Python run-time, and we

plan to support other programming languages. To make the

workloads widely applicable, we prepare each function to be

deployable in AWS, Microsoft, and Google’s cloud function

service. In the AWS and Google cloud, users can configure the

allocated RAM of the function run-time. Moreover, based on

the configured memory size, we prepared the workload input

size to be adjustable.

Micro-benchmark The FunctionBench contains the float
workload (floating point arithmetic operations - squareroot,

sin, and cos); matrix multiplication (two N-dimensional square

matrix); and Linpack (solving linear equations), which is used

to mainly measure the CPU and memory bound performance.

To measure the performance of the disk IO, we add a micro-

benchmark that performs the dd system command, which

creates a file in the /tmp/ directory of the function run-time.

Furthermore, to measure the network performance, we added

the cloud storage (download the object from the input bucket

and upload the object to the output bucket); and an iperf3
workload that initiates a direct connection between sender and

receiver for a test. Since most of current function execution en-

vironments do not provide direct connection between function

run-times [2], we used a dedicated cloud instance to serve

1https://github.com/kmu-bigdata/serverless-faas-workbench

502

2019 IEEE 12th International Conference on Cloud Computing (CLOUD)

2159-6190/19/$31.00 ©2019 IEEE
DOI 10.1109/CLOUD.2019.00091

TABLE I: Workloads in FunctionBench

category name
amount of loads

input output
CPU Memory Disk I/O Network

Micro
benchmark

float high high - - JSON (argument) JSON (argument)
matrix multiplication high high - - JSON (argument) JSON (argument)

linpack high high - - JSON (argument) JSON (argument)
dd medium medium high - value (argument) file (local block storage)

iperf3 low low - high - -
cloud storage low low medium high file(shared block storage) file(shared block storage)

Application
image processing medium medium low low image (shared block storage) image (shared block storage)
video processing high high medium medium video (shared block storage) video (shared block storage)

ML Model
Training

featurization high high medium medium text data (shared block storage) text data (shared block storage)
logistic regression high high medium medium text data (shared block storage) model (shared block storage)

ML Model
Serving

face detection medium medium medium medium video (shared block storage) video (shared block storage)
logistic regression medium medium low low text data (argument) JSON (argument)

CNN (image classification) medium medium low low image (shared block storage) JSON (argument)
RNN (words generation) low low low low JSON (argument) JSON (argument)

as a server where a function run-time can initiate a direct

connection.

Application To represent real-world applications, we added

an Image Processing workload, which performs image trans-

formation tasks using Python Pillow library. In the workload,

it fetches an input image from a shared block storage and

applies ten different effects to it. The outputs are uploaded to

a shared storage. The workload imposes a medium degree of

CPU/memory for the image transformation and low degree

of network and disk IO overhead to download an input

image, upload output images, and store temporary files during

computation. The Video Processing workload applies gray-

scale effect from the OpenCV library to a video input and

uploads the transformed video to a shared storage.

ML Model Training Despite the growing popularity of

the FaaS execution model, most application scenarios are

constrained by the orchestration of many cloud service compo-

nents and some embarrassingly parallel processing jobs [2]. To

extend the application scenarios, the FaaS execution run-time

needs to be machine-learning jobs friendly. Furthermore, to

create new possible application of the service, we introduce a

few data mining tasks in FunctionBench. In a machine learning

job, raw input data generally needs pre-processing to prepare

the input as features for training. In the featurization workload,

we use Amazon Fine Food Review2 text dataset assuming

that each review is transformed into a TF-IDF vector, which

becomes an input to a regression model. Though the maximum

input dataset size that can be executed varies according to the

configured memory size, this workload has the largest input

size for processing and incurs high network overhead. To run

the workload on a FaaS environment with different RAM

configuration in parallel, we partition the input dataset into

various sizes. Also, to calculate a global TF-IDF vector from

partitioned input datasets, multiple invocations of the function

are necessary for parallel processing and aggregation. Public

cloud service vendors provide a function orchestration feature

(e.g., AWS Step function, Microsoft Azure Logic Apps), and

we utilized them in the workload.

Using the outcomes of the featurization workload, the

2https://snap.stanford.edu/data/web-FineFoods.html

modeling workload applies the logistic regression algorithm

to build a model that predicts reviews’ sentiment scores by

using the Python scikit-learn package. The ML Model Training
workloads need to access large-size datasets that are available

in a shared block storage; moreover, these workloads are

generally CPU, memory, and network intensive.

ML Model Serving After building a model, it has to be

served for arbitrary inputs to make prediction. In Function-

Bench, we provided four types of inference scenario. First,

the face detection uses the CascadeClassifier to annotate faces

in a video stream utilizing the OpenCV library. In the logistic
regression workload, we utilize a model built in the ML model

training step, and it takes users’ review text and predicts the

sentiment score.

To provide a deep learning model inference, we added an

image classification model of SqueezeNet [3], which achieves

an impressive accuracy on an ImageNet with 50x fewer

parameters than the state-of-the-art model. It is implemented

with Python Tensorflow Keras. Attempts to import other CNN

models on function run-times proved abortive due to limited

memory size. Considering that the cost of using function ser-

vice is proportional to the RAM usage, using a compact model

with less RAM usage is recommendable in running the service

on a FaaS execution environment. We also added a words

generation model using a RNN implemented with PyTorch.

Overall, the ML Model Serving workloads impose relatively

lesser resource usage overhead than training workloads.

III. EVALUATING WITH FUNCTIONBENCH

We run the proposed FunctionBench on various cloud

computing services. We upload all source codes customized

for different cloud services to the public website. It should be

noted that the purpose of the experiments is not to compare the

performance of various cloud function services, but to present

the applicability of the proposed workloads.

Figure 1a and 1b respectively shows the latency to complete

video processing and model serving workloads on AWS,

Google, and Microsoft cloud services. It is well-known that

the cost of using function services is proportional to the

allocated memory size and running-time; moreover, we assume

503

(a) video processing (b) model serving (c) model training - weak scalability

Fig. 1: Evaluation of FunctionBench workloads on various cloud services

users understand different behaviors of cloud services. In the

experiment, we vary the allocated memory size of the function

run-time, which is shown in the horizontal axis. In contrast to

AWS and Google cloud service, users cannot set memory size

in the Microsoft cloud service; hence, we show the latency of

Microsoft service only at the pre-configured 2GB memory bar.

Missing bars in the figures indicate that the cloud service could

not complete the given workload with the allocated memory

size (with the exception of Microsoft).

According to cloud service providers, configuring more

RAM to the function run-time shortens the workload response

time; however, the ratio of improvement varies for different

providers. Comparing Google cloud and AWS, AWS shows

better performance than Google cloud overall including ex-

perimental results that are not presented in this paper due to

space limitation even when the configured RAM size is the

same. Contrary to AWS, Google cloud function service could

not complete a given task while AWS could do. However, for

model serving workloads, when Google cloud can complete

a task, it provides better performance than AWS. Different

from micro-benchmarks that exclusively evaluate different

resources, the proposed workloads utilizes CPU, memory, disk

IO, and network resources together at different degrees, as

shown in Table I. Thus, the different underlying infrastructure

configurations that are abstracted from users can impact the

overall performance. To accurately compare different function

services, we recommend that the evaluations should be con-

ducted using the realistic workloads provided in this paper.

Also, to demonstrate the weak-scalability of cloud services

for the model training workload, we increase both the input

dataset and configured memory size to measure function

response time. The horizontal axis of Figure 1c shows the

dataset size (D-) and the configured memory size (M-). The

memory size of the Microsoft function is maxed at 2GB, but

the cost is calculated based on the real usage of the memory. To

compare three cloud function services, we indicated the actual

memory usage of Microsoft function invocation on top of the

corresponding bars. As observed from the figure, based on

the performance and cost, none of the cloud function services

can be considered as the best. Users can monitor the status

of functions in order to better configure the functions. This

observation concurs with the challenges in cloud resource

configuration and necessitated autonomic configuration [7].

IV. CONCLUSION AND FUTURE WORK

We presented FunctionBench, a suite of workloads, which

targets the evaluation of various cloud function services and

new algorithms. In addition to micro-benchmarks which are

widely in-use in recent times, FunctionBench provides realistic

data-oriented applications with its source code customized

for major public cloud service vendors (AWS, Google, and

Microsoft). We are positive that this contributions would

broaden the applications areas of FaaS execution model and

facilitate research progress in the relevant fields.

Currently, FunctionBench is publicly available, and we shall

expand the workload scenarios based on the assistance and

feedback received from the research community.

ACKNOWLEDGEMENTS

This work is supported by the National Research Foun-

dation of Korea Grant funded by MSIP (No. NRF-

2015R1A5A7037615 and NRF-2016R1C1B2015135), the ICT

R&D program of IITP (2017-0-00396), and the AWS Cloud

Credits for Research program.

REFERENCES

[1] L. Feng et al. “Exploring Serverless Computing for

Neural Network Training”. In: IEEE Cloud 2018.

[2] Joseph M. Hellerstein et al. “Serverless Computing: One

Step Forward, Two Steps Back”. In: CIDR 2019.

[3] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and ¡1MB model

size”. In: CoRR 2016.

[4] Youngbin Kim and Jimmy Lin. “Serverless Data Analyt-

ics with Flint”. In: IEEE CLOUD 2018.

[5] H. Lee, K. Satyam, and G. Fox. “Evaluation of Pro-

duction Serverless Computing Environments”. In: IEEE
CLOUD 2018.

[6] Edward Oakes et al. “SOCK: Rapid Task Provisioning

with Serverless-Optimized Containers”. In: USENIX ATC
2018.

[7] Myungjun Son and Kyungyong Lee. “Distributed Ma-

trix Multiplication Performance Estimator for Machine

Learning Jobs in Cloud Computing”. In: IEEE Cloud
2018.

[8] Liang Wang et al. “Peeking Behind the Curtains of

Serverless Platforms”. In: USENIX ATC 2018.

504

